Urbanisation in Indonesia: The Relationship between Income Inequality, Urban Infrastructure, Access to Education, and Population Growth with Social Cohesion, Environmental Resilience, and Housing Quality to look at Urbanisation in Indonesia

Eliagus Telaumbanua¹, Iwan Harsono², Ita Soegiarto³
Nias University¹, University of Mataram Indonesia ², State College of Meteorology Climatology and Geophysics³
Email: eliagus.tel@gmail.com

ABSTRACT
Examining their effects on social cohesiveness, environmental resilience, and housing quality in the context of Indonesia's urbanization, this study examines the complex linkages between economic disparity, urban infrastructure, access to education, and population increase. A varied sample of 250 participants' data was evaluated for the study using Structural Equation Modeling - Partial Least Squares (SEM-PLS). The results highlight the complex interactions between these factors and the two ways that income disparity affects housing quality and social cohesiveness. In terms of social cohesion, environmental sustainability, and housing circumstances, urban infrastructure appears as a pivotal factor. High-quality housing and social cohesion are strongly correlated with access to education. The resilience of the environment is threatened by unchecked population expansion, though. Validation of the SEM-PLS model is confirmed by the study's model fit indices. Addressing income gaps, investing in urban infrastructure, promoting accessible education, and strategically managing population growth for sustainable urban development, the results offer policymakers practical insights.

Keywords: Urbanization, Income Inequality, Urban Infrastructure, Access to Education, Population Growth

INTRODUCTION
The migration of people from rural to urban regions, or urbanization, is becoming a major global trend with profound effects on the environment, society, and economy. This tendency is especially noticeable in Indonesia, where the population has been living in cities for the past few decades at a rapid rate. Numerous reasons, including industrialization, job opportunities, population increase, and modernization, have fueled the urbanization process (Humbal et al., 2023). Unchecked urbanization has, meanwhile, also had unfavorable effects, such as slum expansion, air pollution, and environmental deterioration (Kopadze & Jikurashvili, 2023). To solve these problems and lessen urban pollution, greening cities and developing green spaces for recreation are priorities since they can improve people's physical and emotional well-being (Susiati, 2022). Urbanization is a phenomenon that affects rural areas as well as urban areas and is viewed as a sign of both social and economic progress in urban areas (Wesnawa et al., 2023). Rapid urban center expansion is a defining feature of this demographic transformation, bringing with it benefits and challenges that need careful consideration.

Numerous facets of daily life are significantly impacted by Indonesia's urbanization trend. Income inequality becomes a critical factor influencing the path of development as metropolitan regions grow (Susiati, 2022). In addition, access to education and the caliber of the infrastructure are crucial factors in urban development (Mardiansjah et al., 2022). Moreover, urbanization also affects population growth, which may have consequences for the general development of urban areas (Akita &
Pirmansah, 2011). These changes in the socioeconomic sphere are a sign of the larger shifts that are taking place in peri-urban areas, where social, economic, and physical changes are seen (Zahra & Rudiarto, 2023). Consequently, it is crucial to manage urbanization holistically to guarantee that the process is focused on enhancing urban areas and inhabitants' quality of life (Budiyantri & Alviary, 2022). Comprehending the intricate correlation among these factors is crucial in formulating policies that foster sustainable urbanization and tackle the distinct obstacles posed by the Indonesian milieu.

The exceptional pace and magnitude of demographic changes in Indonesia's urban landscape make it imperative to fully comprehend the processes of urbanization. Given that the population is expanding quickly and that a larger proportion of people live in cities, it is urgent to address the opportunities and problems brought about by urbanization. If these problems are not resolved quickly, socioeconomic inequality may increase, metropolitan infrastructure may become more stressed, environmental sustainability may be jeopardized, and social cohesiveness may be weakened (Anggraeni, 2022; Dahlan et al., 2021; Indah, 2022; Silver, 2022; Susiati, 2022).

To avoid impeding general progress, it is critical to address concerns of fair benefit distribution and income inequality prevention as urbanization picks up speed. To help accomplish these objectives, the Sustainable Development Goals (SDGs) (Butcher, 2022) may provide direction. Regarding the SDGs' transformative agenda and the necessity of navigating internal conflicts and objections, there have been a number of concerns. In order to overcome these obstacles and provide a route toward urban fairness, using a relational lens can be helpful (Wan et al., 2022). When putting urban fairness at the top of the agenda, it's critical to take into account who owns cities, who produces knowledge about them, and who is visible in them (Butcher et al., 2021). Reducing inequality can also be achieved by promoting well-managed urbanization, particularly the divide between cities and countryside (Morano et al., 2021). Planning and development for sustainable and equitable urban environments can go more quickly when the SDGs are used to mobilize the urban equality agenda. This study responds to the pressing need for a more thorough comprehension of the interconnected variables influencing Indonesian urbanization and offers insights that can direct preemptive governmental actions and calculated interventions.

The intricate difficulties raised by Indonesia's multifaceted urbanization demand close consideration. A major obstacle to inclusive growth is income disparity, which frequently gets worse in metropolitan areas and can cause social unrest and economic inequities (Susiati, 2022). Concerns concerning the sustainability and resilience of urban settings are also raised by the strain that fast population expansion and unequal access to education are placing on urban infrastructure (Akita & Pirmansah, 2011; Harsono et al., 2023). In the context of Indonesian urbanization, the difficulties of resilience and sustainability in urban areas are examined (Handayani et al., 2022; Harsono et al., 2024). The relationship between unequal development outcomes in Indonesian cities and exclusive capitalist development outcomes in rural areas is also examined in this paper (Aritenang, 2022). These problems emphasize the necessity of more convenient, safe, and dependable public transportation to maintain resilient and sustainable metropolitan regions (Batubara et al., 2023).

The housing crisis makes many urban dwellers' struggles worse by making subpar living circumstances a reality (Dubey et al., 2022; Sutono et al., 2023). However,
focused interventions and efficient policy design are hampered by a lack of a thorough grasp of the problems (Bentley & Baker, 2022). Reorganizing housing regulations for the urban poor is essential, with a focus on rules related to pandemics and epidemics (Çalıyurt, 2022). Furthermore, strategies intended to reduce health disparities ought to concurrently address individual and community issues (Bhatnagar et al., 2023). Residential insecurity and its effects on health outcomes and disparities are issues that healthcare institutions may help with (Greenberg, 2021). Multiple investment channels combined with community-based partnerships are strategies that have the potential to have a significant influence on public health. In the transitional zone between urban and rural communities, environmental and health crises are exacerbated by a lack of affordable housing and ongoing marginalization. The probability of many types of exposure and vulnerability to calamities and health hazards is heightened by inadequate housing.

To understand how income disparity, urban infrastructure, educational access, and population expansion affect social cohesion, neighborhood resilience, and housing quality in Indonesia's urban setting, research on these relationships is desperately needed. By offering empirical data to support evidence-based decision-making, this study seeks to close the knowledge gap. This research aims to support Indonesia's transition to a more egalitarian, sustainable, and socially cohesive urban future by tackling urgent urbanization-related concerns.

Because of the way that urbanization is changing Indonesia's socio-economic structure, academics are paying attention to this phenomenon. Urban hubs are proliferating throughout the archipelago, indicating a rapid change from rural to urban-based economies. The intricate relationships among migration from rural to urban areas, economic activities, and demographic shifts underscore the necessity for a more comprehensive comprehension of Indonesia's urbanization paths (Gamal, 2022; Kurniawan et al., 2022; Silver, 2022; Susiati, 2022; Wesnawa et al., 2023).

Urban income disparity is impacted by several variables, including unequal economic development, employment possibilities, and access to education. Increased urbanization exacerbates economic disparity in Africa because it has a positive and considerable impact on income inequality (Dossou, 2023). On the other hand, enhancing Africa's governance standards can help encourage urban economic expansion and lessen socioeconomic disparity (Chu & Hoang, 2023). Depending on the degree of urbanization, there are different and complex relationships between income disparity and urbanization. The effects of wealth inequality on the environment in emerging nations first get better as a result of urbanization, but at a certain point, they impede improvements in environmental performance (Ali et al., 2022; Harsono et al., 2023). Different income levels are affected differently by urbanization and industrialization's effects on income disparity. Urbanization raises inequality in high-income nations, but industrialization lowers inequality in the majority of low- and middle-income nations (Judijanto et al., 2023; Pandey et al., 2022). Inequality in urban infrastructure is a defining feature of urbanization and significantly affects its attributes (Sharma, 2012). Rapid urbanization in India leads to health disparities and a rise in urban poverty, particularly among the impoverished. It is essential to comprehend the complexities of income disparity in urban settings to develop policies that support social justice and inclusive growth.

The accessibility of education is significantly impacted by the quality of urban infrastructure. Increased educational opportunities are linked to well-developed urban
infrastructure, whereas poor infrastructure restricts access to high-quality education and exacerbates inequality (de Freitas Marangão et al., 2022). Studies have indicated that state-of-the-art physical amenities in schools foster a learning environment and improve students’ academic performance (Boys & Jeffery, 2023; Poștan, 2022; Sebu, 2023; Yangambi, 2023). The accessibility and availability of educational resources and infrastructure close to a person's home are crucial for lifelong learning. Urban schools have the potential to be an essential social infrastructure that serves the entire community in addition to the students enrolled. Furthermore, pedestrian behavior is influenced by the spatial quality of urban infrastructure, such as sidewalks, which can either promote or inhibit the adoption of particular routes. Therefore, it is essential to guarantee well-developed urban infrastructure to encourage equitable access to high-quality education and end the cycle of inequality. To support sustainable urban growth, this literature emphasizes the significance of integrated urban planning that gives physical infrastructure and educational facilities a top priority.

To support population expansion in metropolitan areas while preserving environmental sustainability, strategic urban planning is crucial. Cities that have seen haphazard and uncontrolled urban expansion, particularly in the Global South, are less resilient, productive, inclusive, and sustainable (Angel, 2023). It is essential for efficient policy-making and urban planning to comprehend the spatial organization of population flows, both within and across cities (Reia et al., 2022). Analyzing population dynamics at the district level makes it clear that asymmetric urban expansion is driven by population increase, which is significantly influenced by domestic migration (Marrec et al., 2023; Shaw, 2021). However, especially at small population numbers, deterministic models based on kinetic equations are insufficient to reliably forecast population dynamics. A thorough study program on urban sprawl is required to solve this issue, with an emphasis on the negative effects of unplanned growth and the government's role in directing planned urban expansion. The integration of urban dynamics research with urban informatics can enhance the quality of life and better satisfy human needs in urban environments. Research indicates that unchecked population expansion can put pressure on available resources, worsen urban sprawl, and make it more difficult to maintain a good standard of living.

There are still a few gaps in the literature, despite the fact that it offers insightful information on many facets of Indonesia's urbanization. Studies that do exist tend to concentrate on discrete elements of urban development; comprehensive evaluations that incorporate factors such as population growth, wealth disparity, urban infrastructure, and educational accessibility are lacking. Furthermore, the diverse regions within the Indonesian archipelago necessitate additional in-depth analyses to fully grasp the benefits and problems presented by urbanization in various settings.

METHOD

a. Research Design

The relationship between economic disparity, urban infrastructure, educational access, and population growth in Indonesian urban regions is examined in this study using a quantitative research design. Using a cross-sectional methodology, this study gathers data at a single moment in time to provide an overview of the contemporary urban environment.
b. Sampling
A stratified random sample strategy was employed in the study to guarantee representation from various Indonesian urban locations. A sample size of 250 people was chosen, including homes, educational institutions, and pertinent urban development players. Geographical areas were used as the basis for stratification, which took into consideration the many aspects of urbanization that exist throughout Indonesia.

c. Data Collection
A combination of interviews, structured surveys, and in-person observations were used to gather the data. Households were given surveys to complete to gather data on income, housing circumstances, and opinions of urban infrastructure. To evaluate the quality of education access, a survey of educational institutions was conducted. To supplement the quantitative data, interviews with important stakeholders, such as legislators and urban planners, gave qualitative insights.

d. Data Analysis
Structural Equation Modelling - Partial Least Squares (SEM-PLS) was utilized in the data analysis to investigate the intricate interactions between the variables. The selection of SEM-PLS was based on its capacity to manage latent constructs and observable variables concurrently, providing a potent method for analyzing intricate correlations in data sets. The measurement model's validity and reliability will be evaluated before carrying out the primary analysis. This entails verifying the accuracy and consistency of the information gathered. To analyze the direct and indirect relationships between the independent and dependent variables, structural models are constructed. To determine how strong and important these associations are, path coefficients are looked at. Using the bootstrapping technique, the results' robustness was increased. By estimating standard errors and confidence intervals, this 5000 resampling technique makes it possible to evaluate the model's reliability with greater accuracy. The relevant statistical tests were employed to test the hypotheses that were developed from the research objectives. This entails determining the statistical significance of the links suggested in the study framework. The goodness-of-fit index (GFI) and the root mean square error of approximation (RMSEA) are two examples of model fit indices that are used to assess how well the SEM-PLS model fits the observed data.

RESULTS AND DISCUSSION

a. Demographic Data
The study included 250 volunteers from various Indonesian urban areas. A thorough insight of the respondents was supplied by the demographic profile.

Table 1. Demographic Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>52</td>
</tr>
<tr>
<td>Age Group</td>
<td>18-24</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>25-34</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>35-44</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>45-54</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>55 and above</td>
<td>17</td>
</tr>
<tr>
<td>Educational Level</td>
<td>High School or below</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Bachelor's Degree</td>
<td>45</td>
</tr>
</tbody>
</table>
A broad perspective on urbanization concerns is ensured by the survey's gender distribution, which shows a balanced representation of 52% female and 48% male respondents. A considerable percentage of participants (28%) are between the ages of 25 and 34, which indicates that they are a combination of persons who are working professionals and those who are probably going to be impacted by the dynamics of urbanization. 65% of respondents have at least a bachelor's degree, which indicates that this is a well-educated sample that is likely to be able to offer insightful commentary on issues related to urban development. Additionally, a greater percentage of the population (60%) is working, indicating a sample with a variety of vocational histories and opinions on possibilities and problems in metropolitan areas.

b. Measurement Model

The precision and consistency of the data collected were guaranteed by the measurement model analysis, which evaluated the constructs’ validity and reliability.

Table 2. Measurement Model Statistics

<table>
<thead>
<tr>
<th>Construct</th>
<th>Indicators</th>
<th>LF</th>
<th>CA</th>
<th>CR</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income Inequality</td>
<td>Income Disparity Index</td>
<td>0.89</td>
<td>0.85</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gini Coefficient</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wealth Inequality Ratio</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Infrastructure</td>
<td>Road Quality Index</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public Transportation Accessibility</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Green Space Proximity</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to Education</td>
<td>School Enrollment Rate</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literacy Rate</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Access to Higher Education Index</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population Growth</td>
<td>Annual Population Growth Rate</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urbanization Rate</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Housing Demand Index</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Cohesion</td>
<td>Community Engagement Score</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trust in Local Institutions</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social Inclusion Index</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Resilience</td>
<td>Air and Water Quality Index</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biodiversity Conservation Score</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Climate Change Preparedness</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Housing Quality</td>
<td>Housing Adequacy Index</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infrastructure in Residential Areas</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Housing Affordability Score</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Data processing results (2023)
The measuring model's results show solid conclusions. The loading factors of all the indicators are more than 0.70, indicating that they have a significant impact. All constructions have good internal consistency according to Cronbach’s Alpha values, which are above the suggested cutoff point of 0.70 and imply accurate measurement. The constructs' dependability is further supported by composite reliability values that are significantly higher than 0.70. With Average Variance Extracted (AVE) values more than 0.50, strong convergent validity is demonstrated, confirming that the constructs successfully capture the underlying dimensions. Additionally, discriminant validity is validated because each construct's square root of the AVE is greater than the correlation with other constructs, indicating its uniqueness. All of these findings support the measurement model's validity and robustness.

c. Structural Model

Structural Equation Modeling - Partial Least Squares (SEM-PLS) was used in the structural model analysis to examine the connections between population growth, social cohesion, housing quality, and urban infrastructure as well as income disparity, education access, and urban infrastructure. The table below shows the path coefficients, standard errors, and t-values for every relationship in the structural model:

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Path Coefficient (β)</th>
<th>Standard Error</th>
<th>t-value</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income Inequality → Social Cohesion</td>
<td>0.35</td>
<td>0.06</td>
<td>5.83</td>
<td>Significant</td>
</tr>
<tr>
<td>Income Inequality → Housing Quality</td>
<td>-0.28</td>
<td>0.08</td>
<td>-3.50</td>
<td>Significant</td>
</tr>
<tr>
<td>Urban Infrastructure → Social Cohesion</td>
<td>0.42</td>
<td>0.05</td>
<td>8.40</td>
<td>Significant</td>
</tr>
<tr>
<td>Urban Infrastructure → Environmental Resilience</td>
<td>0.38</td>
<td>0.07</td>
<td>5.43</td>
<td>Significant</td>
</tr>
<tr>
<td>Urban Infrastructure → Housing Quality</td>
<td>0.45</td>
<td>0.09</td>
<td>4.89</td>
<td>Significant</td>
</tr>
<tr>
<td>Access to Education → Social Cohesion</td>
<td>0.31</td>
<td>0.05</td>
<td>6.25</td>
<td>Significant</td>
</tr>
<tr>
<td>Access to Education → Housing Quality</td>
<td>0.27</td>
<td>0.07</td>
<td>3.86</td>
<td>Significant</td>
</tr>
<tr>
<td>Population Growth → Environmental Resilience</td>
<td>-0.25</td>
<td>0.06</td>
<td>-4.17</td>
<td>Significant</td>
</tr>
</tbody>
</table>

Source: Data processing results (2023)

The study discovered a robust relationship between several variables and significant urban outcomes. Income disparity has a favorable effect on social cohesiveness ($\beta = 0.35$, $p < 0.05$), whereas it hurts housing quality ($\beta = -0.28$, $p < 0.05$). It was discovered that urban infrastructure positively impacted neighborhood resilience ($\beta = 0.38$, $p < 0.01$), social cohesion ($\beta = 0.42$, $p < 0.01$), and housing quality ($\beta = 0.45$, $p < 0.01$). It was found that having access to education has a beneficial impact on social cohesion ($\beta = 0.31$, $p < 0.05$) and housing quality ($\beta = 0.27$, $p < 0.05$). Conversely, it was discovered that population growth hurt neighborhood resilience ($\beta = -0.25$, $p < 0.05$). Consistent with theoretical expectations, these results offer empirical evidence of the substantial consequences of population growth, urban
infrastructure, economic inequality, and educational access on social cohesiveness, neighborhood resilience, and housing quality. The strength of these connections is indicated by the strong t-values, which support the validity of the study’s conclusions and demonstrate the statistical significance of the observed effects.

d. Model Fit Indices

To evaluate whether the model adequately explains the observed data, the Structural Equation Modeling - Partial Least Squares (SEM-PLS) model fit assessment process includes looking at several indices. The goodness-of-fit indices that were derived are as follows: Root Mean Square Error of Approximation (RMSEA) of 0.07, Adjusted Goodness-of-Fit Index (AGFI) of 0.89, Goodness-of-Fit Index (GFI) of 0.92, and Comparative Fit Index (CFI) of 0.94. 92% of the variance in the observed data is explained by the model, according to a GFI of 0.92; a higher GFI denotes a better match. With an AGFI of 0.89, the GFI is corrected for the number of estimated parameters; a value around 1 denotes a well-fitting model. An RMSEA of 0.07, which represents the average difference between observed and predicted values adjusted for model complexity, indicates a fair fit, with values below 0.08 being regarded as acceptable. The proposed model is compared to a null model using the CFI, which stands at 0.94. A number near 1 denotes a satisfactory fit. All things considered, these indices show that the SEM-PLS model fits the observed data quite well.

Discussion

The complex picture that is painted by the dual impact of economic inequality is that, within some bounds, a higher degree of inequality may foster stronger social bonds due to its good influence on social cohesiveness. Its detrimental effects on housing quality, however, emphasize the necessity of economic inequality-addressing programs to enhance living conditions. Meanwhile, the positive correlations that exist between social cohesiveness, neighborhood resilience, and housing quality demonstrate the critical role that urban infrastructure plays in fostering high-quality and sustainable urban life. Emphasizing the significance of educational possibilities in enhancing the well-being of urban communities, the beneficial influence of education, particularly in access to education, also plays a positive role as a positive contributor to social cohesion and housing quality. However, the potential that unchecked population expansion could endanger environmental resilience in urban settings is highlighted by the negative association between environmental resilience and population increase. Thus, to maintain environmental sustainability while balancing population expansion, effective urban planning is essential. The study’s findings offer crucial insights into the intricate dynamics of Indonesia’s urbanization. Furthermore, this study’s findings are consistent with earlier investigations. The significant role that well-planned infrastructure plays in fostering sustainable urban development is highlighted by the positive association that has been found between urban infrastructure and social cohesion, neighborhood resilience, and housing quality (Civelli et al., 2023; Harahap et al., 2023). The necessity for focused actions to alleviate differences in living conditions is indicated by the negative association between housing quality and income inequality (Obermayr, 2023). The study’s conclusions also highlight how crucial accessible education is for fostering social cohesiveness and high-quality housing (Agustine et al., 2023). The necessity for smart urban design to support population increase without sacrificing ecological
sustainability is highlighted by the negative association found between environmental resilience and population growth (Dahlan et al., 2021).

a. Policy Implications
 a) Put laws in place to lessen income inequality, to strike a balance that promotes social cohesiveness without sacrificing the standard of housing.
 b) Make investments in well-planned urban infrastructure a top priority if you want to improve overall housing quality, social ties, and environmental sustainability.
 c) Create plans to increase educational access, as this will enhance urban areas’ social cohesiveness and housing quality.
 d) Incorporate sustainable urban planning techniques to manage population expansion while maintaining environmental stability.

b. Limitations and Future Research
 The data’s cross-sectional format makes it difficult to prove causality. To capture dynamic changes over time, longitudinal techniques may be investigated in future research.

CONCLUSION
Conclusively, this study explores the complex aspects of urbanization in Indonesia, revealing significant connections between socioeconomic variables and urban consequences. According to the study, income inequality promotes social cohesiveness but also jeopardizes the quality of housing, requiring careful policy solutions. Urban infrastructure becomes a key factor that improves housing, social cohesion, and environmental sustainability. It turns out that having access to education is essential to improving housing quality and social cohesiveness. On the other hand, uncontrolled population expansion makes environmental resilience more difficult to maintain, which emphasizes the necessity of deliberate urban planning. The Structural Equation Modeling-Partial Least Squares (SEM-PLS) model's robustness is confirmed by the model fit indices. The study makes significant contributions to the conversation around equitable and sustainable urban development by providing stakeholders and policymakers guiding Indonesia’s urban evolution with evidence-based recommendations. These results offer a pertinent and contemporary framework for well-informed decision-making to develop resilient, coherent, and superior urban settings as urbanization continues to reshape the country’s geography.

Reference

